Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis
نویسندگان
چکیده
Some lignocellulosic food byproducts such as potato peels, wheat bran, barley bran and chestnut shells were evaluated as potential sources of xylose for microbial xylitol production by yeasts. Potential yeast strains were selected after screening xylitol production of some indigenous yeasts in a defined fermentation medium. Candida tropicalis strains gave the highest results with 83.28 and 54.07 g/L xylitol production from 100 g/L xylose. Lignocellulosic materials were exposed to acid hydrolysis at different conditions. Chestnut shells gave the highest xylose yield and the hydrolysate of chestnut shells was used in further experiments in which xylitol productions of two potential C. tropicalis strains were investigated. Combined detoxification method including evaporation, overliming and activated charcoal with the use of threefold concentration and also yeast extract supplementation suggested to be efficient for both growth and product formation in chestnut shell hydrolysate in which 40 % xylitol yield was obtained. It was concluded that detoxified and fortified chestnut shell hydrolysate could be a potential medium for xylitol production.
منابع مشابه
Enhanced Xylitol Production from Statistically Optimized Fermentation of Cotton Stalk Hydrolysate by Immobilized Candida tropicalis
Cotton (Gossypium hirsutum), which is one of the most abundant crops in the world, is cultivated widely in China, the United States, and Central Asia. The cotton stalk generated with cotton cultivation is an important source of lignocellulosic biomass. In recent years, cotton stalk has received increasing attention from researchers engaged in bioconversion areas, and some high-value products, s...
متن کاملAerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob
BACKGROUND For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work ...
متن کاملCellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain
BACKGROUND Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single y...
متن کاملXylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components
Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH2PO4 and initial pH were identified as significant variables by Plackett-Burman (PB) desi...
متن کاملEvaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber
Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such...
متن کامل